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SUMMARY

The estimated accuracy of a classifier is a random quantity with variability. A common practice in super-
vised machine learning, is thus to test if the estimated accuracy is significantly better than chance level.
This method of signal detection is particularly popular in neuroimaging and genetics. We provide evidence
that using a classifier’s accuracy as a test statistic can be an underpowered strategy for finding differences
between populations, compared to a bona fide statistical test. It is also computationally more demanding
than a statistical test. Via simulation, we compare test statistics that are based on classification accuracy,
to others based on multivariate test statistics. We find that the probability of detecting differences between
two distributions is lower for accuracy-based statistics. We examine several candidate causes for the low
power of accuracy-tests. These causes include: the discrete nature of the accuracy-test statistic, the type of
signal accuracy-tests are designed to detect, their inefficient use of the data, and their suboptimal regular-
ization. When the purpose of the analysis is the evaluation of a particular classifier, not signal detection,
we suggest several improvements to increase power. In particular, to replace V-fold cross-validation with
the Leave-One-Out Bootstrap.
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2 J. D. ROSENBLATT AND OTHERS

1. INTRODUCTION

Many neuroscientists and geneticists detect signal by fitting a classifier and testing whether its prediction
accuracy is better than chance. The workflow consists of fitting a classifier, estimating its predictive
accuracy using cross-validation (CV), and testing the hypothesis that this accuracy can be attributed
to chance alone. This general idea has been promoted in the statistical literature (Friedman, 2003) and
separately in the machine-learning literature (e.g. Eric and others, 2008; Lopez-Paz and Oquab, 2016).
Examples in the genetics literature include Golub and others (1999), Yu and others (2007), Jiang and
others (2008), and many more. Examples in the neuroscientific literature, which is our motivating use-
case, include Golland and Fischl (2003), Pereira and others (2009), the very popular multivariate pattern
analysis (MVPA) framework in Kriegeskorte and others (2006), and many more.

To fix ideas, we will adhere to a concrete example. In Gilron and others (2017), the authors seek to
detect brain regions that encode differences between vocal and non-vocal stimuli. Following the MVPA
workflow, the localization problem is cast as a supervised learning problem: if the type of stimulus can
be predicted from the brain region’s activation pattern significantly better than chance, then a region is
declared to encode vocal/non-vocal information. We call this an accuracy-test, because it uses prediction
accuracy as a test statistic.

This same signal detection task can also be approached as a multivariate two-group test. Inferring
that a region encodes vocal/non-vocal information, is essentially inferring that the spatial distribution
of brain activations is different given a vocal/non-vocal stimulus. A practitioner may thus approach the
signal detection problem with a two-group hypothesis test. Multivariate two-group hypothesis-tests may
be divided into tests for equality of location (i.e. means), and two-sample goodness of fit tests (equality of
the distributions, GOF in short). The former generalizing the t-test, and the latter (roughly) generalizing
Kolmogorov–Smirnov’s test.

Crucially for our applications, we will assume that the number of samples is in the order of the dimension
of each sample, if not smaller. In the statistical literature, this is known as a high-dimensional problem.
We emphasize that by high-dimension it is not necessarily implied that the sample is large, even if it is
often the case. In our motivating example, it means that the size of the brain’s region of interest is large
compared to the number replications of a treatment/stimulus. It is thus a high-dim–small-sample problem.

In a seminal contribution, Bai and Saranadasa (1996) noted that in high-dimension, multivariate tests
tend to be low powered unless some regularization is involved. Since then, many high-dimensional tests
have been proposed. These can be classified along the following lines: High-dim goodness of fit tests—
Tests that seek for any difference between two multivariate distributions. GOF in short. High-dim location
tests—Tests the seek for a shift in mean vectors. Shifts may be in many coordinates (dense), or only in a
few (sparse). We collectively call GOF tests and location tests two-group tests.

At this point, it becomes unclear which test is preferable, in particular for genetics and neuroimaging:
two-group tests or accuracy-tests? In this manuscript, we do not provide a full answer to the matter.
Instead, we seek to demonstrate that in the high-dimensional regime accuracy-tests never have more
power than two-group tests. Our recommendations to the practitioner in these high-dim problems: (i)
prefer a two-group test over an accuracy-test; (ii) appropriate regularization is crucial.

Various authors have compared accuracy-tests to two-group tests, often with contradicting conclusions.
InYu and others (2007) for instance, authors find that an accuracy-test based on a tree predictor is preferable
over a two-group test. Their simulated shift is sparse, which may be favorable for tree type predictors,
over linear ones. Olivetti and others (2013) compare the kernel test of Gretton and others (2012) to an
accuracy-test based on logistic-regression. Their results are inconclusive with a slight advantage to the
logistic regression. In Lopez-Paz and Oquab (2016), authors compare several accuracy-tests to several
two-group tests and conclude that an accuracy-test based on a neural-net is preferable. Their argument is
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Classification for detection 3

that the neural-net is able to learn the features that best separate the samples. Their examples, however, are
low-dimensional (even if large-sample), and such feature learning may be impossible in high dimension.

Ramdas and others (2016) currently offer the only analytic analysis; comparing Hotelling’s T 2 location
test to Fisher’s linear discriminant analysis (LDA) accuracy-test. By comparing the consistency rates
Ramdas and others (2016) conclude LDA and T 2 are rate-equivalent. Rates, however, are only a first stage
when comparing test statistics. Two statistics may be rate-equivalent, yet one much more efficient than
the other.

We study the power of many accuracy, and two-sample tests, in a large scale simulation study. This
allows us to evaluate theoretical results such as Ramdas and others (2016), in various small-sample
configurations. Our configurations include various two-group effect models. A particular emphasis is
given to multivariate shift effects, but also include other effect models such as logistic regression and
mixtures. We focus on two-group problems, because the study of multi-group problems can be derived
from multiple binary decisions (Zheng and others, 2018).

The simulation scenarios were designed with neuroimaging and genetic applications in mind. In these
applications the sample acquisition is expensive, and the samples high-dimensional, leading to the high-
dim–small-sample setup. Binary outcomes correspond to healthy/sick individuals, or active/inactive brain
regions. Highly correlated contentious predictors correspond to blood oxygenation levels in a brain region,
or gene expressions. Average blood oxygenation levels are expected to vary when a brain region is active,
thus justifying our interest in shift alternatives. The same holds in genetics, where average expression
levels of disease encoding genes are expected to vary between healthy and sick individuals. The problem
is formalized in Section 2. The main findings are reported in Sections 3 and 4, with extensions in the
Supplementary material available at Biostatistics online. We conclude with a discussion.

2. PROBLEM SETUP

Multivariate testing: Let y ∈ Y be a class encoding. Let x ∈ X be a p-dimensional feature vector. In our
vocal/non-vocal example, we have Y = {0, 1} and p = 27, the number of voxels in a brain region so that
X = R

27. We denote with xy a sample of x from group y. We denote the distribution of x1 with F and x0

with G.A two-group test amounts to testing whether F = G. For example, we can test whether multivariate
voxel activation patterns are similarly distributed when given a vocal stimulus (x1) or a non-vocal one (x0).
The tests are calibrated to have a fixed false positive rate (α = 0.05). The comparison metric between
tests is power, the probability to infer that F �= G.

From a test statistic to a permutation test: The tests we consider rely on fixing some test statistic, T ,
and comparing its observed value to its permutation distribution. Tests differ in the statistic they employ.
We adhere to permutation tests and not parametric inference because in high-dim–small-sample problems
central limit approximations are typically poor.

The sketch of our permutation test is the following: (i) Fix a test statistic T with a right tailed rejection
region. (ii) Sample a random permutation of the class labels, π(y). (iii) Permute labels and recompute the
statistic Tπ . (iv) Repeat (ii)–(iii) R times. (v) The permutation p-value is the proportion of Tπ larger than
the observed: 1

R

∑
π I {Tπ ≥ T }. (vi) Declare F �= G if the permutation p-value is smaller than α, which

we set to α = 0.05.

Two-group tests: The most prevalent interpretation of F �= G is to assume they differ in means, i.e., a
shift class of alternatives. This is not a logical equivalence, but rather a prevalent convention (the Behrnes–
Fisher problem is a counter example where equal means do not imply equal distributions). In his seminal
work in 1931, Harold Hotelling proposed the T 2 test as a straightforward generalization of the t-test, for
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4 J. D. ROSENBLATT AND OTHERS

testing the equality in means of two multivariate distributions (Hotelling, 1931). For more background
see, for example, Anderson (2003).

In high dimension, when n is not much larger than p, the T 2 test is very low powered (Bai and Saranadasa,
1996). Many high-dimensional versions of the T 2 test exist, which consist of regularizing the estimator
of �. Examples of high-dim tests for (dense) shifts include Dempster (1958), Bai and Saranadasa (1996),
Schäfer and Strimmer (2005), Goeman and others (2006), Srivastava and Du (2008), and many more.
If E(x1) differs from E(x0) in few coordinates, we say the signal is sparse. Examples of high-dim test
statistics for sparse shifts include Cai and others (2013) and Chang and others (2017). It is possible that
the practitioner is unaware of the amount of sparsity in the signal. Some high-dim test statistics that adapt
to the level of (unknown) sparsity include Simes (1986), Donoho and Jin (2004), and many more.

If the signal is present not (only) in means, we opt for a two-group GOF test, instead of a location test.
Examples of multivariate GOF tests include Bickel (1969), Friedman and Rafsky (1979), Hall and Tajvidi
(2002), Székely and Rizzo (2004), Biau and Gyorfi (2005), Gretton and others (2012), and many more.

As previously mentioned, a classifier’s accuracy may also be used as a test statistic. We now explain
how an accuracy-test is constructed.

Prediction accuracy as a test statistic: An accuracy-test amounts to using a predictor’s accuracy as a test
statistic. Denoting a data set by S := {(xi, yi)}n

i=1, a predictor, AS : X → Y , is the output of a learning
algorithm A when applied to the data set S. The accuracy of a predictor, EAS , is defined as the probability
of AS making a correct prediction for a new data point. It is also known as (the complement of) the test
error. The accuracy of a learning algorithm, EA, is defined as the expected accuracy over all possible
data sets S. It is also known as (the complement of) the expected test error. Formalizing, let P be the
probability measure of (x, y), and by PS the joint probability measure of the sample S. We can then write
EAS := ∫

(x,y) I{AS(x) = y} dP , and EA := ∫
S EAS dPS , where I{A} is the indicator function of the set

A.
If y is independent of x, then AS cannot capture any signal and is no more accurate than a coin toss

(for balanced classes). This is known as chance level. A statistically significant better-than-chance-level
estimate of EA, or EAS , is evidence that the classes are distinct. Two popular estimates of ÊA are the
resubstitution accuracy, also known as (the complement of) the train-error, and the V-fold CV estimate.

DEFINITION 1 (Resubstitution accuracy) The resubstitution accuracy estimator of a learning algorithm A,
denoted ÊResub

A , is defined as ÊResub
A := 1

n

∑n
i=1 I{AS(xi) = yi}.

DEFINITION 2 (V-fold CV accuracy) Denote by Sv the v’th partition, or fold, of the data set, and
by S (v) its complement. The V-fold CV accuracy estimator, denoted ÊVfold

A , is defined as ÊVfold
A :=

1
V

∑V
v=1

1
|Sv |

∑
i∈Sv I{AS(v) (xi) = yi}, where |A| denotes the cardinality of a set A.

How to estimate accuracies? Estimating ÊA requires design choices regarding the estimation of accu-
racies. In particular, are the accuracies estimated via CV? For the purpose of statistical testing, bias in ÊA
is not a problem, since it does not inflate the error rates of the accuracy-tests. We will thus be considering
both unbiased cross-validated accuracies, and biased resubstitution accuracies. For V-fold CV, we will use
V = 4 and will constrain the data folds to be balanced, a.k.a. stratified. More on resampling estimators of
accuracy, in the Supplementary material available at Biostatistics online.

Table 1 collects an initial battery of tests we will be comparing. We selected the accuracy-tests based
on their popularity in the literature. We selected two-group tests based on their popularity, and so that
various types of test statistics are represented: tests for dense and sparse shifts, and GOF tests.
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Fig. 1. The power of the permutation test with various test statistics. The power on the x-axis. Effects are color and
shape coded. Effects vary over n

2 ‖μ‖2
� = 0 (red circle), 25 (green triangle), and 100 (blue square). The various

statistics on the y-axis. Their details are given in Table 1. Simulation details in Section 3.1.

3. RESULTS

We now compare the power of our various statistics in various configurations. We do so via simulation.
The basic simulation setup is presented in Section 3.1. Following sections present variations on the basic
setup. The R code for the simulations can be found in https://github.com/johnros/better_than_chance_code
(commit 13ceaf).

3.1. Basic simulation setup—Fisher’s LDA

The basic simulation setup is essentially the sampling distribution underlying Fisher’s LDA. In each
replication, we generate n independent samples from a shift class

xi = μyi + ηi, (3.1)

where yi ∈ Y = {0, 1} encodes the class of observation i, μ is a p-dimensional shift vector, the measure-
ment, ηi, is distributed as Np (0, �). The sample size is set to n = 40, and the dimension of the data set
to p = 23. The covariance � = I .

In this basic setup, reported in Figure 1, the shift is denoted by μ. We set μ := c e where e is a p-vector
of ones. This implies that shifts are dense and equal in all p coordinates. We use the Mahalanobis norm
between means as a measure of signal-to-noise (SNR): n

2‖μ‖2
� = n

2μ
′�−1μ.

Having generated the data, we compute each of the test statistics in Table 1. We then compute a
permutation p-value by permuting the class labels, and recomputing each test statistic. We perform 300
permutations (with one exception, explained in Section 3.1.1). We reject the F = G null hypothesis if
the permutation p-value is smaller than 0.05. The reported power is the proportion of replicates where
the permutation p-value fell below 0.05. We use R = 1000 replicates, so that the standard errors of our
estimates are ≤0.6% under the null and ≤1.5% in general.
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6 J. D. ROSENBLATT AND OTHERS

Table 1.This table collects the various test statistics we will be studying.Two-group tests for dense shifts
include: Oracle, Hotelling, Schafer, Goeman, and Srivastava. Two-group tests for sparse shifts include
Cai. Two-group adaptive tests for shifts include Simes. The rest are accuracy-tests, marked with a �,
and details given in the table. For example, svm.CV.c100 is a linear SVM, with V-fold cross-validated
accuracy, and cost parameter set at 100 (Meyer and others, 2015). svm.CV.cCV is a linear SVM, with
V-fold CV accuracy, and cost parameter optimized with (an inner) CV. lda.noCV.1 is Fisher’s LDA, with
a resubstituted accuracy estimate. Also recall that in LIBSVM, the cost is inversely proportional to the
regularization (Chang and Lin, 2011): larger cost implies less regularization

Name Algorithm Resampling Remark

�svm.noCV.c001 SVM Resubstitution cost=0.01�svm.noCV.c100 SVM Resubstitution cost=100�svm.CV.cCV SVM V-fold cost=CV�svm.CV.c001 SVM V-fold cost=0.01�svm.CV.c100 SVM V-fold cost=100�lda.noCV.1 LDA Resubstitution —�lda.CV.1 LDA V-fold —
Cai Cai and others (2013) Resubstitution —
Simes Simes (1986) Resubstitution —
dCOV Székely and Rizzo (2004) Resubstitution —
Gretton Gretton and others (2012) Resubstitution —
Srivastava Srivastava and Du (2008) Resubstitution —
Goeman Goeman and others (2006) Resubstitution —
Schafer Schäfer and Strimmer (2005) Resubstitution —
Hotelling Hotelling (1931) Resubstitution —
Oracle T 2 with Known � Resubstitution —

3.1.1. False positive rate We start with a sanity check. Theory suggests that a (random) permutation
test with the identity permutation is slightly conservative, and without the identity, it is slightly liberal.
Theory also suggests that this bias vanishes with the number of permutations (Hemerik and Goeman,
2018). We thus ran the initial simulation setup with 1000 permutations, and confirmed that all permutation
tests control their false positive rates. This can be seen in Figure 1, where the power under the null (red
circles) is no larger than the nominal error rate of α = 0.05. We may thus proceed and compare the power
of each test statistic.

3.1.2. Power In our first simulation setup, two-group tests are more powerful than accuracy-tests
(Figure 1). This is most notable for the intermediate signal strength (green triangles).

3.1.3. Sample size We focus on high-dim–small-sample configurations because of our motivation in
neuroimaging and genetics. Our results, however, also hold in the high-dim–large-sample configurations.
To prove this point, we increase the scale of the problem by one order of magnitude: we fix p/n at 23/40
and set n = 400, p = 230. The results are qualitatively similar to the high-dim–small-sample in Figure 1,
and reported in the Supplementary material available at Biostatistics online.

3.2. Departure from Gaussianity

Hotelling’s T 2 is a generalized likelihood ratio test in the Gaussian shift class. This Neyman–Pearson
Lemma type reasoning that favors two-group location-tests over accuracy-tests in our simulations may

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/advance-article-abstract/doi/10.1093/biostatistics/kxz035/5587128 by TEL AVIV U

N
IV LIB O

F LIFE SC
I & M

ED
 user on 22 O

ctober 2019

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxz035#supplementary-data


Classification for detection 7

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Oracle
Hotelling
Schafer
Goeman

Srivastava
Gretton
dCOV
Simes
Cai

lda.CV.1
lda.noCV.1

svm.CV.c100
svm.CV.c001
svm.CV.cCV

svm.noCV.c100
svm.noCV.c001

0.00 0.25 0.50 0.75 1.00
Power

(a)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Oracle
Hotelling
Schafer
Goeman

Srivastava
Gretton
dCOV
Simes
Cai

lda.CV.1
lda.noCV.1

svm.CV.c100
svm.CV.c001
svm.CV.cCV

svm.noCV.c100
svm.noCV.c001

0.00 0.25 0.50 0.75 1.00
Power

(b)

Fig. 2. Short memory, AR(1) correlation. �k ,l = ρ |k−l|; ρ = 0.6. (a) Signal in direction of highest variance PC of �.
(b) Signal in direction of lowest variance PC of �.

fail when the data are not Gaussian. To verify our conclusions in the non-Gaussian case, we replaced
the multivariate Gaussian distribution of η in (3.1) with a heavy-tailed multivariate-t distribution with 3
degrees of freedom. In this heavy-tailed setup, the dominance of the two-group tests was preserved, even
if less evident than in the light-tailed Gaussian case. Results are in the Supplementary material available
at Biostatistics online.

3.3. Departure from sphericity

We now test the robustness of our results to correlations in x, In terms of (3.1), we use various correlation
structures in �. We also vary the direction of the signal, μ, and distinguish between signal in high variance
principal component (PC) of � and in the low variance PC.

To keep the comparisons fair, we kept n
2‖μ‖2

� fixed. Note that this induces differences in the Euclidean
norm between population means ‖μ‖2 between the two settings. In the Supplementary material available
at Biostatistics online, we report the power when fixing ‖μ‖2 instead.

The simulation results reveal some non-trivial phenomena. When the signal is in the direction of the
high variance PC, the high-dim two-group tests are far superior than accuracy-tests (Figure 2(a)). When
the signal is in the direction of the low variance PC, there is no clear preference between two-group
or accuracy-tests (Figure 2(b)). Instead, the non-regularized tests are the clear victors. We attribute this
phenomenon to the bias introduced by the regularization, which masks the signal (see Section 5.3.1).

3.4. Departure from shift alternatives

Shift alternatives are a popular signal model in the statistical literature. This is due to mathematical
convenience, but also for empirical reasons: (i) Many effects are “pure shifts” after a scale transformation.
For instance, a multiplicative effect in log scale. (ii) Many effects are not pure shifts, but have a shift
component. In fact, it would be quite controversial to assume an effect is manifested in higher moments
alone.
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Fig. 3. Logistic regression with second order interactions. Data generated via y|x ∼ Binom(1, p(x)); p(x) =
exp(η)/[1 + exp(η)]; η = x′β + x′Bx where β is a scaled vector of ones, and B a scaled identity matrix. Finally,
x ∼ N (0, Ip×p). (a) Data analyzed in the original space (x). (b) Data analyzed in augmented interactions space (x̃).
Some tests that are possible in x but not in x̃ are omitted.

For completeness, we now report power for logistic regression. Logistic regression is not a shift class.
This is because when fixing P(y|x), there is no marginal distribution of x for which x1 is a shifted version
of x0. In Figure 3, we report the usual power of our tests for a logistic model with main effects and second
order interactions. We analyzed it both in the original space, x, and in an augmented space, x̃ with second
order interactions: x̃ := �(x) = (x1, . . . , xj, . . . , xp, . . . , x1x1, . . . xjxj′ , . . . , xpxp). The figure demonstrates
that two-group tests still dominate in power, even when the problem departs from the shift class. They also
confirm that augmenting the feature space takes a toll in power, because many more covariance parameters
need to be estimated. Sometimes, this toll is worthwhile, because the signal resides in the augmented space.
Sometimes, this toll is needless, because the signal resides in the original space. Figure 3b is an example
of the latter. In the Supplementary material available at Biostatistics online, we provide an example of the
former by simulating a logistic regression with main effects only.

3.5. Beyond V-fold CV

In V-fold CV, the discretization of the accuracy statistic is governed by the number of samples. This is
the case whenever resampling without replacement. Intuition suggests we may alleviate the discretization
of the accuracy statistic by replacing the V-fold CV, and resampling with replacement. An algorithm that
samples test sets with replacement is the leave-one-out bootstrap estimator, and its derivatives such as the
0.632 bootstrap (Friedman and others, 2001, Section 7.11).

DEFINITION 3 (bLOO) Denote by Sb, a bootstrap sample b of size n, sampled with replacement from S.
Also denote by C(i) the index set of bootstrap samples not containing observation i. The leave-one-out
bootstrap estimate, ÊbLOO

A , is defined as: ÊbLOO
A := 1

n

∑n
i=1

1
|C(i)|

∑
b∈C(i) I{ASb(xi) = yi}.

Simulation results are reported in Figure 4 with naming conventions in Table 2. As expected, sampling
test sets with replacement does increase the power of accuracy-tests, when compared to V-fold CV, but
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Table 2. The same as Table 1 for bootstrapped accuracy estimates. bLOO
is defined in Definition 3. B denotes the number of Bootstrap samples.
Accuracy-tests marked with a �
Name Algorithm Resampling B Remark

�lda.Boot.b10 LDA bLOO 10 —�svm.Boot.c001.b50 SVM bLOO 10 cost=0.01�svm.Boot.c100.b50 SVM bLOO 10 cost=100�svm.Boot.c001.b10 SVM bLOO 50 cost=0.01�svm.Boot.c100.b10 SVM bLOO 50 cost=100
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●
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Oracle
Hotelling
Schafer
Goeman

Srivastava
Gretton
dCOV
Simes
Cai

lda.CV.1
lda.noCV.1

svm.CV.c100
svm.CV.c001
svm.CV.cCV

svm.noCV.c100
svm.noCV.c001

svm.Boot.c100.b10
svm.Boot.c001.b10
svm.Boot.c100.b50
svm.Boot.c001.b50

lda.Boot.b10

0.00 0.25 0.50 0.75 1.00
Power

Fig. 4. Bootstrap. The power of a permutation test with various test statistics. The power on the x-axis. Effects are
color and shape coded. The various statistics on the y-axis. Their details are given in Tables 1 and 2. Effects vary over
n
2 ‖μ‖2

� = 0 (red circle), 25 (green triangle), and 100 (blue square). Simulation details in Section 3.1.

still falls short from the power of two-group tests. It can also be seen that power increases with the number
of bootstrap replications, since more replications reduce the level of discretization.

3.6. High-dim regularized accuracy-tests

Our best performing tests regularize the estimation of �. In our high-dim setup regularization adds power,
as seen by comparing the non-regularized T 2 to its regularized versions. Regularization is achieved by
thresholding the entries of �̂ (Goeman, Srivastava statistics), or inflating the diagonal of �̂ (Schaffer).

Can we explicitly regularize the covariance estimate of a classifier? The answer is affirmative and
quite a lot of research effort has been devoted to the matter of covariance-regularized classifiers. See, for
instance Bickel and Levina (2004) or Dobriban and Wager (2018). We thus augment our simulations with
some accuracy-tests that have explicit covariance regularization in them. These include shrinkage-based
LDA (Pang and others, 2009; Ramey and others, 2016), where Tikhonov regularization of �̂ is used;
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Fig. 5. HighDim Classifier. The power of a permutation test with various test statistics. The power on the x-axis. Effects
are color and shape coded. The various statistics on the y-axis. Their details are given in Tables 1 and 3. Effects vary
over n

2 ‖μ‖2
� = 0 (red circle), 25 (green triangle), and 100 (blue square). Simulation details in Section 3.1.

Table 3. The same as Table 1 for regularized (high-dimensional) predictors.
Accuracy-tests marked with a �
Name Algorithm Resampling Parameters

�lda.highdim.Dudoit.CV Dudoit and others (2002) V-fold —�lda.highdim.Ramey.CV Ramey and others (2016) V-fold —�lda.highdim.Pang.CV Pang and others (2009) V-fold —�lda.highdim.Pang.b50 Pang and others (2009) bLOO B=50

just like the Schafer two-group test. We also try a diagonalized LDA (Dudoit and others, 2002), a.k.a
Gaussian Naïve Bayes, which regularizes by canceling non-diagonal entries.

Simulation results are reported in Figure 5 with naming conventions in Table 3. The proper regular-
ization of the covariance of a classifier, just like a two-group test, can improve power. See, for instance,
svm.CV.c001 which is clearly the best regularized SVM for testing. Replacing the V-fold with a bootstrap
allows us to further increase the power, as done with lda.highdim.Pang.b50. Even so, the out-of-the-box
two-group tests outperform the accuracy-tests.

Optimizing the regularization parameter for classification does not result in a good test. The svm.CV.cCV
statistic has a regularization parameter optimized with an inner CV. The svm.CV.c001 statistic has a fixed,
large, regularization. The better power of svm.CV.c001 leads us to argue that the optimal regularization
for prediction is larger than the optimal for testing.

4. NEUROIMAGING EXAMPLE

Figure 6 is an application of (i) the Srivastava two-group test, and (ii) a linear SVM accuracy-test, to the
neuroimaging data of Pernet and others (2015). The authors of Pernet and others (2015) collected fMRI
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Classification for detection 11

Fig. 6. Brain regions encoding information discriminating between vocal and non-vocal stimuli. Map reports the
centers of 27-voxel sized spherical regions, as discovered by an accuracy-test u and a two-group test (Srivastava).
The linear SVM was computed using 5-fold CV, and a cost parameter of 1. Region-wise significance was determined
using the permutation scheme of Stelzer and others (2013), followed by region-wise FDR ≤ 0.05 control using the
Benjamini–Hochberg procedure (Benjamini and Hochberg, 1995). Number of permutations equals 400. The two-
group test detect 1232 regions, and the accuracy-test 441, 399 of which are common to both. For the details of the
analysis, see Gilron and others (2017).

data while subjects were exposed to the sounds of human speech (vocal), and other non-vocal sounds.
Each subject was exposed to 20 sounds of each type, totaling in n = 40 trials. The study was rather large
and consisted of about 200 subjects. The data were kindly made available by the authors at the OpenNeuro
website (http://reproducibility.stanford.edu/).

We perform group inference using within-subject permutations along the analysis pipeline of Stelzer
and others (2013). Our test statistics account for dependence in space, but require independence in time.
Parameters were estimated with an orthogonal design, and an AR(6) temporal model. Further details of
the analysis, are reported in Gilron and others (2017).

In agreement with our simulation results, the two-group test (Srivastava) discovers more brain regions
of interest when compared to an accuracy-test. The former discovers 1232 regions, while the latter only
441, as depicted in Figure 6. We emphasize that both test statistics were compared with the same permu-
tation scheme, and the same error controls, so that any difference in detections is due to their different
power.

5. DISCUSSION

We have set out to understand which of the tests is more powerful: accuracy-tests or two-group tests.
Our current observation is that we have never found accuracy-tests to be preferable in high-dim regimes;
there was always a two-group test that dominated in power. We conjecture that accuracy tests are never
preferred because of the needless discretization built in the test statistic. We also conjecture the advantage
of two-group tests will increase when scaling from two-class to multi-class classification. Two-group tests
are typically easier to implement, and faster to run, since no resampling is required. Statistics such as
Schafer, Goeman, Srivastava, dCOV, and Gretton, are particularly well suited for detecting multivariate
signal in high-dim.
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12 J. D. ROSENBLATT AND OTHERS

5.1. Where do accuracy-tests lose power?

The low power of the accuracy-tests compared to two-group tests can be attributed to some of the following
causes.

5.1.1. Data splitting CV splits the data. The train set serves to learn a statistic, and the test set to compute
it. In a train-test validation scheme, the effective sample size is that of the test set. This is clearly inefficient.
In a V-fold validation scheme, the statistic is the average over all test sets, so the effective sample size is
less obvious. We argue that this is still an inefficient use of the data, as seen in the distributed learning
literature, where splitting the sample and averaging is less accurate then learning with the whole data
(Rosenblatt and Nadler, 2016).

5.1.2. Inappropriate regularization From the fact that svm.CV.cCV is less powerful than svm.CV.c001,
we learn that testing requires different regularization than predicting. Does testing require more or less
regularization? In our simulations, the optimal cross-validated regularization for SVM (the inverse of the
cost of svm.CV.cCV ) was smaller than that of the most powerful SVM (svm.CV.c001).We thus conclude that
testing requires more regularization than predicting. Why would this happen? Regularization introduces
bias and reduces variance. For prediction, we care about the bias in all coordinates of μ. For testing, we
only care about the bias in the largest coordinates of μ. This means that when testing, the bias introduced
by regularization is not limited by the smaller coordinates of μ, permitting to remove more variance. This
phenomenon was also observed in Cheng and Schwartzman (2017), which observe that recovering the
support of a function requires different regularization (i.e. smoothing) than the matched filter theorem,
optimal for recovering the whole function.

5.1.3. Discretization Permutation tests with discrete test statistics are known to be conservative. Firstly,
a Monte-Carlo sample of permutations is conservative compared to a full enumeration of permutations
(Hemerik and Goeman, 2018). Secondly, the presence of ties does not allow to exhaust the permissible
false positive rate, unless randomization is introduced. Thirdly, a discrete test statistic is less sensitive to
mild perturbations of the data. For intuition, consider using resubstitution accuracy, i.e., the train-accuracy,
as a test statistic. In a very high-dimensional regime, overfitting may cause the resubstitution accuracy to
be as high as 1 for both the observed data and most label-permuted data. The concentration of accuracy
scores near 1, and its discretization, render this test completely useless: power tends to 0 for any (fixed)
effect size as p grows. This explains the terrible power of svm.noCV.c100 that is effectively unregularized.

We observe that the power loss due to discretization may be considerable. We compare Figher’s LDA
to Hotelling’s T 2, which have comparable resubstitution accuracy after binarizing the predictions. For
intermediate signals strength (Figure 1), Hotelling has roughly twice the power of LDA (lda.noCV.1).
Note that this power loss due to discretization will not be captured by asymptotic analyses such as Ramdas
and others (2016), because the discretization decreases with sample size.

5.2. A good accuracy-test

Often we want to know if a particular predictor can extract information in a region. Examples include brain–
computer interfaces and clinical diagnostics (Olivetti and others, 2012; Wager and others, 2013). In those
cases, we may prefer accuracy-tests. Here are some observations for increasing power in accuracy-tests:

Test-set size: Larger test-sets reduce the effect of discretization on the power of accuracy-tests.
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Classification for detection 13

Regularize: Regularization proves crucial to detection power in low SNR regimes (n ≈ p) or under
strong correlations. We find that shrinkage-based diagonal LDA (Pang and others, 2009) performs well
overall. More research is required on optimal regularization for testing.

Resample with replacement: Smoothing the accuracy estimates by cross-validating with replacement
(e.g. the bLOO method) improves power for accuracy-tests compared toV-Fold.We believe this is primarily
due to the smoothing effect.

5.3. Additional comments

5.3.1. Effect of covariance regularization Figure 2 demonstrates that detecting signal in the direction of
the high variance PCs is very different than detecting in the low variance PCs.We attribute this phenomenon
to regularization. Whereas the signal, μ, varies in direction, the regularization of �̂ does not. From ridge
regression, we know that Tikhonov regularization of the covariance shrinks estimates more aggressively
in the low PCs of the design. Signal is thus masked if the difference between group means is the directions
of smaller variance. In those cases, unregularized tests dominate the regularized ones.

5.3.2. Sparse alternatives Dense alternatives are motivated by neuroimaging where most brain locations
in a regions carry signal. In a genetic application, a “sparse” alternative may be more plausible. In the
Supplementary material available at Biostatistics online, we report the power when μ carries signal in a
single coordinate, making it very sparse. As usual, two-group tests dominate accuracy-tests. This time,
however, tests for sparse shifts (Cai, Simes) dominate the T 2 type statistics.

5.3.3. Feature mapping It may be argued that only accuracy-tests permit the separation between classes
in augmented feature spaces, such as in reproducing kernel Hilbert spaces (RKHS). The Gretton statistic
(Gretton and others, 2012), is an example where a two-group test is performed after an implicit augmen-
tation of x to some RKHS. More generally, the design matrix may be augmented as we please, up to
computational considerations. We thus disagree with the argument that accuracy-tests have more flexibil-
ity than two-group tests. For example, in Section 3.4, we analyze the data both in the original space and
in an augmented space.

A different argument is that the feature mapping may not be known, but rather learned from the data.
This is true in low-dimension, where data are abundant compared to the model’s complexity. In high-dim
problems data are barely sufficient to learn covariances in the original space, let alone to learn a space
augmentation and covariances in the augmented space.

5.4. Epilogue

Given all the above, we find the popularity of accuracy-tests for signal detection quite puzzling. We believe
this is due to a reversal of the inference cascade. Researchers first fit a classifier, and then ask if the classes
are any different. Were they to start by asking if classes are any different, and only then try to classify,
then two-group tests would naturally arise as the preferred method.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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