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A B S T R A C T

Visual feedback can facilitate or interfere with movement execution. Here, we describe behavioral and neural mechanisms by which the congruency of visual feedback
during physical practice of a motor skill modulates subsequent performance gains. 18 healthy subjects learned to execute rapid sequences of right hand finger
movements during fMRI scans either with or without visual feedback. Feedback consisted of a real-time, movement-based display of virtual hands that was either
congruent (right virtual hand movement), or incongruent (left virtual hand movement yoked to the executing right hand). At the group level, right hand performance
gains following training with congruent visual feedback were significantly higher relative to training without visual feedback. Conversely, performance gains
following training with incongruent visual feedback were significantly lower. Interestingly, across individual subjects these opposite effects correlated. Activation in
the Supplementary Motor Area (SMA) during training corresponded to individual differences in subsequent performance gains. Furthermore, functional coupling of
SMA with visual cortices predicted individual differences in behavior. Our results demonstrate that some individuals are more sensitive than others to congruency of
visual feedback during short-term motor learning and that neural activation in SMA correlates with such inter-individual differences.
Introduction

Vision provides a rich source of information supporting the perfor-
mance of motor acts. For instance, consider what would happen to the
performance level of a basketball player when shooting a free throw with
eyes closed or to a painter drawing a sketch with no visual cues.
Behavioral studies examined the effects of visual input on action per-
formance (Sturmer et al., 2000; Brass et al., 2001; Kilner et al., 2003) and
how the motor system adapts to manipulations in visual feedback
(Wolpert et al., 1995; Kagerer et al., 1997). A study by Saunders and Knill
revealed that humans use continuous visual feedback to correct their
concurrent movements (Saunders and Knill, 2003), suggesting a
real-time integration between action and visual feedback (Wolpert and
Ghahramani, 2000; Desmurget and Grafton, 2003).

In the context of learning new motor skills, online visual feedback has
been shown to facilitate motor learning. For example, Shea and Wulf
trained different groups of subjects to maintain their balance on a sta-
bilometer with and without visual feedback (Shea andWulf, 1999). Their
results showed enhanced learning in subjects that were provided with
feedback compared to no-feedback. Others have shown that at the group
level, visual feedback was the most effective source of sensory input
during motor training (Adams et al., 1975; Proteau, 1992). While a great
deal of previous research has focused on the effect of visual input on
executed movements at the averaged group level (Smith and Bowen,
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1980; Carlton, 1992; Collins and Luca, 1995; Kilby et al., 2017), it is
acknowledged that some individuals learn better than others (Ackerman,
1987; Unsworth and Engle, 2005; Tubau et al., 2007; Sigrist et al., 2013).

At the neural level, individual differences in motor learning have
been shown to correlate with structural (anatomical) differences and
changes in blood-oxygen level dependent (BOLD) levels during training
(Della-Maggiore et al., 2009; Tomassini et al., 2011). Importantly, vari-
ations in learning have been found to correlate with activation in
visuomotor networks (Kincses et al., 2008). Evoked activity within these
regions during action observation and imitation has also been reported
(Grezes and Decety, 2001; Tanaka and Inui, 2002; Gazzola et al., 2006),
supporting their importance in integrating visual information to motor
performance during training.

In a recent study we reported that manipulated (incongruent) visual
feedback during short-term unimanual motor training facilitates learning
in the untrained hand. Furthermore, activity in the superior parietal
lobule correlated with individual differences in learning (Ossmy and
Mukamel, 2016b). Here, we examine the link between congruency of
visual feedback during training and individual differences in perfor-
mance gains with a focus on the physically trained hand. Healthy subjects
were trained inside a functional magnetic resonance imaging (fMRI)
scanner to perform sequences of right hand finger movements with (i) no
visual feedback (ii) congruent visual feedback of a right virtual hand
simulating subject's real right hand movement in real-time or (iii)
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incongruent visual feedback of a left virtual handmoving in sync with the
subject's real right hand movement.

Materials and methods

Subjects

Eighteen healthy subjects (10 females, mean age: 27.4, range: 22–34
years) participated in the study after providing informed consent. All
subjects were right handed with normal or corrected-to-normal vision
and no reported cognitive deficits or neurological problems. Subjects
were recruited according to the standard safety criteria for fMRI studies.
Subjects were naïve to the purpose of the study and participated in the
experiment either for course credit or money (55 NIS per hr). The study
was conducted in accordance with the protocol approved by the Ethics
Committee of Tel-Aviv University and the Helsinki committee at the Tel-
Aviv Sourasky Medical Center.
Experimental design

Subjects completed five experimental sessions (5 consecutive runs) in
which they learned unique sequences of finger movements. Fingers were
numbered from index (1) to little finger (4) and subjects were asked to
learn a different sequence in each session (5 different sequences: 4-1-3-2-
4, 4-2-3-1-4, 3-2-4-1-3, 3-1-4-2-3, 2-3-4-1-2; see Fig. 1a). Subjects lied
supine with their arms to the side of their body and palms facing up.
Subjects could not see their real hands during the scans. We recorded the
subjects’ finger movements using MR compatible gloves (5DT Data Glove
Ultra) that allowed yoking the movements of virtual hands presented on
a screen to real hand movements during relevant experimental condi-
tions. The two virtual hands were presented on a screen with black
background (see Fig. 1b). In the scanner, subjects viewed the screen
through a tilted mirror mounted in front of their eyes.

In the beginning of each session (see design of single session in
Fig. 1c), subjects were presented with an instructions slide depicting two
hand illustrations with numbered fingers and a 5-digit sequence under-
neath representing the sequence of finger movements to be learned. The
instructions slide was presented for 12 s followed by a pre-training
evaluation stage in which baseline performance level of each hand was
separately assessed. During the evaluation, subjects performed the
required sequence with one hand repeatedly as fast and as accurate as
possible for 30 s (hand order right\left was counter balanced across all
sessions). At this stage real-time visual feedback consisted of a simulta-
neous display of two virtual hands whose finger movements were yoked
in real-time to the subjects' actual finger movements recorded by the
gloves. After initial performance evaluation of the two hands, subjects
trained under one of the following 5 training conditions: 1. Congruent
visual feedback - subjects physically trained with their right hand while
receiving congruent real-time visual feedback of right virtual hand
movement on the screen (condition RH-RH); 2. Incongruent visual
feedback - subjects physically trained with their right hand while
receiving real-time corresponding visual feedback of left virtual hand
movement (RH-LH); 3. No visual feedback - subjects physically trained
with their right hand while no visual feedback (black screen) was pre-
sented (RH-None); 4. Right hand observation only - subjects passively
observed the virtual right hand performing the sequence, while both
their real hands were immobile (None-RH); 5. Left hand observation only
– subjects observed the virtual left hand performing the sequence, while
both their real hands were immobile (None-LH). The current study fo-
cuses on the first 3 conditions in which subjects actively performed the
finger sequences with their right hand. The order of the active training
conditions was counter balanced across subjects, and the finger sequence
to be learned was randomized across conditions. Results from the
training by observation conditions (None-RH, and None-LH) have been
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recently reported (Ossmy and Mukamel, 2016b). When visual feedback
was provided (all conditions except condition 3) both virtual hands
appeared on the screen, while movement of the relevant virtual hand
(depending on experimental condition) was yoked to real right hand
finger movement. For each experimental condition, a unique sequence of
finger movements was learned. Following the pre-training evaluation
stage, a “Start Training” slide appearing for 9 s cued the subjects to the
upcoming training stage in which they performed the sequence of finger
movements in a self-paced manner. In the training by observation con-
ditions (None-RH, and None-LH) the pace of virtual hand finger move-
ment was set based on the average pace of the subject's finger movements
during previous execution conditions (see (Ossmy and Mukamel, 2016b)
for further details). The training stage consisted of 20 training blocks.
Each training block lasted 15 s followed by 9 s of a yellow blank screen
that served as cue for resting period. After the training stage, subjects'
performance level was re-evaluated as previously for 30 s in each hand.
For each training condition, the same sequence was used in the pre/post
evaluation stages. During both pre- and post-training evaluation stages,
subjects were instructed to repeatedly execute the sequence as fast and as
accurately as possible while visual feedback of virtual hand movement,
congruent to real hand movement, was provided (regardless of the type
of training condition).
Behavioral analysis

Each sensor of the glove provided the angle of each finger joint
(sampling rate¼ 16ms), and allowed us to calculate subject's perfor-
mance (P) by counting the number of correctly performed complete 5-
digit sequences within 30 s in all evaluation stages. We considered in-
dividual finger movement as correctly performed only when the angle
between the proximal phalange and the metacarpal reached 90�. Sub-
ject's performance gain (G) following training was calculated using the
formula below:

G ¼ pposttraining � ppretraining
pposttraining þ ppretraining

Where Ppost_training/Ppre_training corresponds to the subject's perfor-
mance in the post/pre training evaluation stage. Therefore, a positive G
index reflects improvement in performance following training. We
calculated right hand performance gain index for each subject and
experimental condition. The effect of visual feedback on motor learning
at the individual subject level was calculated relative to the no-feedback
condition using the formulas below:

TC ¼ GRH�RH � GRH�None

TI ¼ GRH�LH � GRH�None

where TC (training congruent) is the difference between G index after
training with congruent feedback (RH-RH) and the G index after training
with no feedback (RH-None). Similarly, TI (training incongruent) is the
difference between G index after training with incongruent visual feed-
back and the G index after training with no visual feedback. Subject's
sensitivity to visual feedback during training was termed VS and calcu-
lated as the sum of the absolute values of TC and TI above:

VS ¼ j TCj þ jTI j
Data from the motion detection gloves were used as previously re-

ported (Ossmy and Mukamel, 2016b), to verify that the subjects did not
move their fingers during the observational training conditions (Non-
e-RH and None-LH). For each subject, we also used the data from the
gloves’ sensors in each training block (20 blocks per training condition)
to compare the total amount of self-paced movements performed during
training across the different conditions.



Fig. 1. Experiment details. (a) Instructions – At the beginning of each session, a unique sequence of numbers together with a sketch of the mapped fingers was presented. (b) Stimuli -
picture of the virtual hands used as visual feedback during training. (c) Schematic illustration of one experimental session. After instructions, subjects performed the sequence as accurately
and rapidly as possible using their right hand (RH) and their left hand (LH) separately for initial evaluation of performance. Next, subjects were trained under a specific training type, and
finally the evaluation test was repeated. Each subject underwent a total of 5 different training sessions corresponding to five different conditions and unique finger sequences. Order of the
active training sessions was counter-balanced across subjects.
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fMRI data acquisition

Blood oxygenation level dependent (BOLD) contrast was obtained on
a 3T General Electric scanner with an 8 channel head coil located at the
Tel-Aviv Souraski Medical Center, Tel-Aviv, Israel. An echo-planar im-
aging sequence was used to obtain the functional data (39 contiguous
866
ascending interleaved axial slices, 4mm thickness, slice gaps¼ 0;
TR¼ 3000ms; flip angle¼ 90�; TE¼ 30ms; in-plane resolu-
tion¼ 1.72� 1.72mm; matrix size¼ 128� 128). In addition, anatom-
ical reference was obtained by T1-weighted scan (voxel
size¼ 1� 1� 1mm) for each subject.
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fMRI preprocessing

All fMRI data were processed using the BrainVoyager QX software
(version 2.6, Brain Innovation, Maastricht, Netherlands). Prior to statis-
tical analysis, a preprocessing procedure was performed on all functional
images and included cubic spline slice-time correction, trilinear 3D mo-
tion correction, and high-pass filtering (above 0.006Hz). In addition, we
assessed head movements and verified no scans contained head move-
ment exceeding 2mm. The 2D functional images were co-registered to
the anatomical images and the complete dataset was transformed into the
Talairach coordinate system for multi-subject comparisons (Talairach
and Tornoux, 1988).

ROI analysis

We defined brain regions of interest (ROIs) relevant to the perceptual-
motor task by performing a general linear model (GLM) analysis on the
fMRI data obtained during the training stage. Since we were interested in
motor regions that are sensitive to visual input we used the conjunction
contrast: RH-None> rest \ None-RH> rest. In addition, ‘visual-only’
ROIs within the visual cortex that are sensitive to visual input during
mere observation were defined by the contrast None-RH> rest U None-
LH> rest. The ROIs were chosen based on the multi-subject map, how-
ever the exact coordinates of each ROI were defined by the peak acti-
vation using the same contrasts at the individual subject level. All the
resulting maps were corrected for multiple comparisons by controlling
the False Discovery Rate (Benjamini and Hochberg, 1995) and thresh-
olded at q(FDR)< 0.05, with a minimum cluster size of 30 contiguous
voxels. In each ROI, we examined the correlation between fMRI activa-
tion in the different experimental conditions (type of visual feedback)
and the corresponding behavioral effect (performance gain) across sub-
jects. As neural measure, for each ROI in each of the eighteen subjects, we
calculated the average contrast value across all voxels during training
with congruent feedback relative to training without visual feedback
(obtained from the GLM contrast: RH-RH> RH-None), yielding a vector
of 18 average contrast values. As behavioral measure, we took the cor-
responding Tc value. In a similar fashion, we performed the same cor-
relation analysis using the data from the incongruent feedback condition
(taking the contrast values obtained from the GLM contrast:
RH-LH> RH-None) and the corresponding TI values.

Multivariate analysis

To examine whether activation patterns across voxels in each ROI are
sensitive to the type of visual feedback provided during right hand
training (congruent/incongruent), we used a multivoxel pattern analysis
(MVPA) classifier approach in each one of the 18 subjects separately. We
used a Matlab implementation of a support vector machine classifier
(Chang and Lin, 2011) to discriminate activation patterns during RH-RH
and RH-LH trainings as belonging to congruent/incongruent feedback
type. Classification of feedback type was based on left-out trial activation
patterns. For classification model construction we used radial basis
function (RBF) kernel with factor C¼ 1 and γ¼ 0.008. Data from each
experimental block was represented as the average signal amplitude in
the 3 time points corresponding to 6-, 9- and 12-sec following block onset
(TR¼ 3sec). Signal amplitude was expressed as percent signal change
relative to baseline – defined as the average signal at time points�3 s and
0 s relative to the beginning of the block. Thus, the time-course of each
voxel in the ROI was reduced to two 1� 20 vectors (20 experimental
blocks per condition, and one vector for each type of feedback). For each
ROI, the following classification procedure was implemented: First, data
from all voxels in the ROI were extracted - resulting in a 20xM matrix of
values for each feedback type, where M is the number of voxels in the
ROI. In order to keep the number of voxels identical across all ROIs, we
used M¼ 125. Therefore, in each ROI we extracted data from the 125
voxels nearest to the voxel with the highest p-value in the GLM map.
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Next, we randomly chose data from one training block from each con-
dition to be used as test set and the classifier was modeled based on the
remaining two datasets of 19 blocks. Following the model construction,
classification performance was assessed on the test set ('leave-one--
trial-out'). The average performance level across all 400 possible com-
binations of train/test sets (20 trials per condition) was assigned to the
ROI. In order to assess statistical significance of classification perfor-
mance level, we performed an identical classification procedure as
described above using the same data but with shuffled labels across
conditions as input to the classifier. In order to obtain a distribution of
shuffle-labeled classifications accuracies, this was repeated 1000 times.
For each one of the 18 subjects, an ROI was defined as significantly
coding feedback type if the real classification level exceeded the
shuffle-labeled distribution with significance level of α¼ 0.01.
Functional connectivity analysis

We conducted whole-brain functional connectivity analysis using the
activation in relevant ROI defined as seed region for each subject. Re-
gressors were generated by calculating the mean activation across all
voxels in the seed region during RH-LH and RH-RH trainings separately
(training duration¼ 480sec/TR¼ 3sec, yielding a regressor of 160 time
points which include rest periods between training blocks). The design
matrix of each subject consisted of RH-LH or RH-RH regressors from the
seed region. Multi-study whole-brain contrast was performed to identify
the regions that show the strongest functional connectivity during RH-LH
and RH-RH training across subjects.

Results

Sensitivity to visual manipulation - behavior

Subjects performed a total number of 126� 11.6 full sequence
movements during each training type (Mean� SD across subjects and
training types) which was not significantly different across training
conditions (minimal p¼ .34 across subjects; rmANOVA). Fig. 2a depicts
the right hand group average performance gains following physical
training (conditions RH-None, RH-RH and RH-LH; See also Table 1).
Physical training with no visual feedback yielded significant performance
gains (GRH-None¼ 0.09� 0.03, Mean� SEM; p¼ .02; two-tailed unequal
variance t-test compared to zero). The addition of congruent visual
feedback during training resulted in significantly enhanced learning at
the group level (GRH-RH¼ 0.25� 0.04; p¼ 8⋅10�3 two-tailed paired t-test
compared to GRH-None). Conversely, following training with incongruent
feedback, performance gain was significantly reduced relative to training
with no visual feedback (GRH-LH¼�0.01� 0.06; p¼ .04 two-tailed
paired t-test compared to GRH-None), and was not significantly different
than zero (p¼ .8; two-tailed unequal variance t-test). Interestingly across
individual subjects, the increased gains for congruent visual feedback
(Tc) and decreased gains for incongruent visual feedback (Ti) - correlated
(r¼�0.55, p¼ .01; Spearman correlation; See Fig. 2b). This result sug-
gests that with respect to short term motor skill learning, individual
subjects exhibit different sensitivity levels to visual feedback, and that
this sensitivity can work in both directions (either enhance or interfere)
depending on feedback type (congruent/incongruent). We further
examined this effect by applying k-means clustering method (Likas et al.,
2003) with k¼ 2 to obtain the optimal partitioning of subjects to two
groups based on their sensitivity to visual feedback during learning (VS;
see Materials and methods). This analysis yielded a group of 6 subjects
who were significantly more sensitive to feedback than the other twelve
(See Fig. 2c; VS¼ 0.75� 0.08 compared to VS¼ 0.14� 0.02; p¼ .001;
two-tailed unequal variance t-test). Pre-training performance of the
subjects found sensitive to visual feedback was not significantly different
from pre-training performance of non-sensitive subjects (mean perfor-
mance¼ 10.5 vs. 11.25 respectively; p¼ .76, unequal variance t-test).



Fig. 2. Behavioral results. (a) Group performance gains after training with congruent visual feedback (green) were significantly higher than performance gains following training without
visual feedback (blue). Similarly, group performance gains after training with incongruent feedback were significantly lower than performance gains following training without visual
feedback (red) (p< .05 denoted by asterisks). (b) Negative correlation across subjects between TC and TI such that subjects showing higher gains following training with congruent visual
feedback had lower gains following training with incongruent visual feedback. (c) Individual subject sensitivity to visual feedback. K-means analysis (K¼ 2) on the performance
enhancement (Tc) and interference (Ti) effects shown in panel a. One group (red; n¼ 6) was significantly more sensitive to visual feedback (Tc þ Ti) than the other group (green; n¼ 12;
p¼ .001).

Table 1
Right hand – performance gains. Individual subject's performance during pre- and post-training evaluation stages. Each cell represents the number of correctly performed complete 5-digit
sequences within 30 s. S – subject number.

#
S

RH-RH RH-LH RH-None

Pre training Post training G index Pre training Post training G index Pre training Post training G index

1 3 10 0.53 13 9 �0.18 11 10 �0.04
2 7 10 0.17 3 6 0.33 6 9 0.2
3 2 5 0.42 13 2 �0.73 3 2 �0.2
4 7 19 0.46 16 14 �0.06 12 15 0.11
5 17 22 0.12 20 23 0.06 24 29 0.09
6 4 15 0.57 15 8 �0.3 10 13 0.13
7 10 15 0.2 16 7 �0.39 15 19 0.11
8 11 16 0.18 17 21 0.1 13 13 0
9 13 14 0.03 16 13 �0.1 16 13 �0.1
10 5 18 0.56 12 11 �0.04 12 15 0.11
11 13 16 0.1 14 15 0.03 13 15 0.07
12 4 8 0.33 6 14 0.4 2 5 0.42
13 14 21 0.2 11 26 0.4 8 19 0.4
14 13 17 0.13 11 15 0.15 13 18 0.16
15 8 11 0.15 15 14 �0.03 6 6 0
16 7 7 0 14 17 0.09 6 6 0
17 11 14 0.12 18 19 0.02 10 10 0
18 15 20 0.14 27 26 �0.01 18 21 0.07
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ROIs sensitive to visual input

All subjects performed the evaluation and training stages while un-
dergoing a whole-brain fMRI scan. Fig. 3 demonstrates the random effect
multi-subject maps relative to rest of: physical training with no feedback
(RH-None; Fig. 3a), training by right hand observation (None-RH;
Fig. 3b) and physical training with congruent\incongruent feedback (RH-
RH, RH-LH; Fig. 3c). To define motor regions that are sensitive to visual
input, we performed a GLM conjunction analysis on the fMRI data ob-
tained during right-hand physical training without visual feedback, and
training by right-hand observation (RH-None> rest \ None-RH> rest).
The conjunction contrast using training by left-hand observation (RH-
None> rest \ None-LH> rest), yields a similar map – in agreement with
our previous report showing similar activations for None-RH> rest and
None-LH> rest; (see Ossmy and Mukamel, 2016a). The conjunction
revealed 2 regions at the multi-subject level (see Fig. 4a): bilateral sup-
plementary motor area (SMA; size at the group level: 239 voxels; peak
activation Talairach coordinates in the multi-subject map: x¼�3;
y¼�5; z¼ 58) and the left superior parietal lobule (lSPL; size at the
group level: 127 voxels; peak activation Talairach coordinates: x¼�34;
y¼�56; z¼ 52). These regions were chosen as ROIs for further analysis
at the individual subject level. The exact coordinates of these ROIs were
defined at the individual subject level (for peak activation Tailarach
coordinates in each subject using the same conjunction analysis see
Table 2).
Fig. 3. Activation maps during the different conditions. Random effect multi-subject acti
significant regions obtained from the GLM contrast (a) RH-None> rest, (b) None-RH> rest, an
lapping regions between the two. Direct contrast: RH-RH> RH-LH yielded an empty map.
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Sensitivity to visual feedback - multivariate fMRI analysis

We examined whether the pattern of activation in each ROI is sen-
sitive to the type of visual feedback (congruent\incongruent) during
physical training with the right hand. To that end, we employed multi-
variate pattern analysis (MVPA; See Materials and methods). For each
one of the 18 subjects separately, we constructed a classifier that was
provided with labeled stimuli (according to the type of visual feedback)
and corresponding SMA or L-SPL response patterns. ROI selection (based
on the conjunction contrast: RH-None> rest \ None-RH> rest), was in-
dependent to the input to the classifier (activation patterns during
training with congruent/incongruent visual feedback: RH-RH and RH-LH
respectively; See Materials and methods). At the individual subject level,
subjects with strong behavioral modulations depending on training type
(i.e. high VS levels found in k-means clustering analysis; see Fig. 2c)
showed significant classification with high accuracy levels based on their
fMRI activation patterns in SMA (see Fig. 4b, red for individual subject
classification levels; average classification accuracy across sub-
jects¼ 73.2%, N¼ 6; p< .05). The same classification analysis based on
SMA activation patterns in the subjects with weak behavioral modula-
tions, was not significantly different from that obtained from shuffled
label data (see Fig. 4b, green for individual subject classification level;
average classification accuracy across subjects¼ 52.09%, N¼ 12). Acti-
vation patterns in L-SPL did not yield significant classification levels
relative to corresponding accuracy levels obtained when condition labels
were shuffled (mean classification accuracy across subjects with strong
vation maps (N¼ 18) from the training stage corrected using q(FDR)< 0.05, displaying
d (c) RH-RH> rest (yellow) and RH-LH> rest (blue). Green regions correspond to over-



Fig. 4. Classification of visual input. (a) ROI analysis. Random effect multi-subject activation map (N¼ 18) displaying significant regions obtained from the GLM contrast: RH-
None> rest \ None-RH> rest during the training period (q(FDR)< 0.05; see Materials and methods). (b) Across the two ROIs, SMA activation patterns significantly classified the type of
visual feedback in all the subjects with strong behavioral modulations (red; see Fig. 2c). Classification accuracies in the subjects with weak behavioral modulations (green; see Fig. 2c) was
not significantly different than shuffled-labeled classification accuracies (gray bars) and chance level (black dashed line).

Table 2
ROI coordinates. Talairach coordinates of each subject's peak voxels in the SMA and left
SPL ROIs defined by the contrast RH-None > rest \ None-RH > rest at the individual
subject level (Fig. 4a).

Subject SMA coordinates Left SPL coordinates

1 [�4–2 57] [�31–63 50]
2 [�1–6 64] [�44–61 46]
3 [�4–6 56] [�32–54 48]
4 [1–3 55] [�33–56 52]
5 [�2–7 58] [�37–49 48]
6 [�4–10 53] [�30–52 45]
7 [�2–8 53] [�21–64 40]
8 [�6–10 61] [�30–55 55]
9 [�2–6 58] [�42–45 52]
10 [�4–1 56] [�21–55 59]
11 [�4–6 55] [�29–58 50]
12 [�6–9 58] [�30–64 50]
13 [�5–8 65] [�30–52 45]
14 [�1–5 69] [�37–51 52]
15 [�5–12 50] [�28–53 52]
16 [�4–7 57] [�28–72 45]
17 [�9–1 49] [�34–37 45]
18 [�1–15 61] [�26–58 52]
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behavioral modulations¼ 53.9%, minimal p> .25 across subjects; mean
classification accuracy across subjects with weak behavioral modula-
tions¼ 54.9%, p> .17). This provides evidence for the sensitivity of SMA
activation patterns to the type of visual feedback during physical training
which also corresponds with subsequent behavioral changes of individ-
ual subjects.
870
Correlation between neural activation patterns and performance gains

Activation in the SMA was also examined with respect to corre-
sponding behavioral changes in right hand performance (enhancement
and interference effects; see Materials and methods). We found that the
average contrast across training blocks (RH-RH vs. RH-None) in the
bilateral SMA significantly correlates with TC during training with
congruent visual feedback (see Fig. 5a; Spearman r¼ 0.53; p< .05 Bon-
ferroni corrected for 2 ROIs). Similarly, the contrast (RH-LH vs. RH-
None) in bilateral SMA correlates negatively with TI values during
training with incongruent visual feedback (see Fig. 5b; Spearman
r¼�0.57; p< .05 Bonferroni corrected for 2 ROIs). We did not find
significant correlation between differences in SMA activation and abso-
lute performance levels in both congruent (RH-RH vs. RH-None; post-
training behavior - p¼ .15, r¼�0.35; pre-training behavior – p¼ .1,
r¼ 0.39) and incongruent condition (RH-LH vs. RH-None; post-training –
p¼ .11, r¼ 0.38; pre-training – p¼ .78, r¼�0.07; see Table 1). Contrast
in the L-SPL also yielded significant correlation with TC values during
training with congruent visual feedback (Spearman r¼ 0.61; p< .05) but
not with TI values during training with incongruent visual feedback
(Spearman r¼ 0.009; p¼ .97). In addition, we did not find significant
correlations between the contrast in the visual regions with TC values
during training with congruent visual feedback (left visual – p¼ .42,
r¼ 0.2; right visual - p¼ .35, r¼ 0.23) or TI during training with
incongruent visual feedback (left visual – p¼ .21, r¼�0.31; right visual -
p¼ .06, r¼�0.45). Taken together, the results suggest that during
physical training, the modulation of SMA activity due to the addition of
visual feedback (congruent or incongruent) corresponds with the mod-
ulation in behavior rather than the absolute performance level at the



Fig. 5. Correlation of neural activation with behavior. (a) Scatter plot showing individual subject contrast in SMA during training with congruent feedback (RH-RH vs. RH-None)
plotted against subsequent performance enhancement (Tc). (b) Contrast of activation in SMA during training with incongruent feedback (RH-LH vs. RH-None) plotted against subse-
quent performance interference (Ti). (c) Functional connectivity map with SMA as seed region (see Fig. 4a) during training with congruent feedback (q(FDR)< 0.05). The degree of
coupling between SMA and a patch of voxels in the left OcG (black circle) correlated with subsequent performance gains (see Materials and ,ethods). (d) Functional connectivity map with
SMA as seed region during training with incongruent feedback (q(FDR)< 0.05). The degree of coupling between SMA and a patch of voxels in the right OcG (black circle) correlated with
subsequent performance gains (see Materials and methods).
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beginning or end of practice.
Neuroimaging: functional connectivity analysis

To further examine the neural network underlying sensitivity to vi-
sual feedback, we performed a functional connectivity analysis. First, we
used the activation in SMA during training with congruent feedback as
seed (see Materials and methods). This analysis revealed clusters in left
primary motor cortex, left pre-motor cortex, bilateral superior parietal
lobule, bilateral thalamus, bilateral striatum, left and right visual cortex
and right cerebellum. Interestingly, we found that in a patch of voxels
located in the left occipital gyrus (left OcG), the strength of connectivity
with SMA during training with congruent feedback significantly corre-
lated with subsequent performance gains across subjects (r¼ 0.64;
p¼ .003; Spearman correlation). Other regions did not yield significant
correlation (See Fig. 5c).

Finally, we performed a similar analysis using the same SMA voxels as
seed region but this time using their activation during training with
incongruent feedback. The functional connectivity map revealed similar
regions to the ones obtained during training with congruent feedback
(79% overlap). We found that in a patch of voxels located in the right
occipital gyrus (right OcG), the strength of connectivity with SMA during
training with incongruent feedback exhibited a significant negative
correlation with subsequent performance gains across subjects
(r¼�0.66; p¼ .002; Spearman correlation). In other words, stronger
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functional connectivity between SMA and right OcG during training with
incongruent visual feedback implied smaller subsequent behavioral
right-hand performance gains (i.e. stronger interference). Other regions
did not yield significant correlation (See Fig. 5d). Taken together, this
shows that subjects exhibiting stronger functional connectivity (cross-
talk) between SMA and visual regions contralateral to the observed
moving hand are also more susceptible at the behavioral level to the
influence of visual feedback.

Discussion

The human eye provides rich and important feedback during the
acquisition of a newmotor skill (Salmoni et al., 1984; Sigrist et al., 2013).
Previous studies have noted that visual feedback can facilitate or inter-
fere with motor learning (Shea and Wulf, 1999). The present study was
designed to determine how different types of visual feedback during
physical training modulate short-term learning. Examining performance
gains in the trained hand revealed enhanced learning following training
with congruent visual feedback and attenuated learning following
training with incongruent visual feedback (relative to training with no
visual feedback). Interestingly we found that across subjects these two
effects correlated, suggesting that some individuals are behaviorally
more sensitive than others to visual feedback and its congruency level.

Our results are in agreement with previous studies showing that
congruency of visual input affects performance of executed actions at the
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group level (Sturmer et al., 2000; Kilner et al., 2003). Previous studies did
show that individual experts are more sensitive to visual information
than novices (Williams and Ward, 2003; Dicks et al., 2010; Steinberg
et al., 2016). However, most behavioral studies examining the role of
congruency of visual feedback in motor learning did not focus on the
variation in individual subjects.

At the neural level, we examined regions in which the representation
of observed and executed actions overlapped. We found that the bilateral
SMA and left SPL were active both during training by observation and
training by physical practice without visual input. These findings are
consistent with data obtained in previous neuroimaging research which
reveal that action observation evokes activation within various regions
traditionally associated with motor function (Grezes and Decety, 2001;
Garry et al., 2005; Gazzola et al., 2006). It was further shown that these
regions are engaged in learning by observation/imitation (Iacoboni et al.,
1999; Ossmy and Mukamel, 2016b).

Motor regions such as the inferior frontal gyrus (IFG) and right SPL
have been also shown to be sensitive to visual input (Buccino et al., 2001;
Jeannerod, 2001). Indeed we found these regions to respond during our
observation condition (Fig. 3b). However, these regions did not survive
our observation/execution conjunction analysis for ROI analysis. This
might be explained by our experimental design in which no visual
feedback was provided during the execution condition (RH-None). This
is opposed to traditional studies of the human mirror system that either
use an observation condition (Cross et al., 2008) or use an execution
condition that is accompanied by visual input (such as during imitation)
(Iacoboni et al., 1999; Rizzolatti et al., 2001; Higuchi et al., 2012;
Molenberghs et al., 2012).

At the group level, both SMA and left SPL were active during
congruent/incongruent training but activation level did not differentiate
the two training types. Activation maps of the two training types over-
lapped and direct comparison between them yielded an empty map.
Nonetheless, examining the data at individual subject level reveals a
different picture. Activation patterns in the SMA differentiate the type of
training in a subset of subjects in which visual input induced strong
behavioral modulations. This result emphasizes the importance of look-
ing beyond group results.

In the context of learning, visual input has been shown to induce
plastic changes at the neural level. McGregor and Gribble, report changes
in resting state functional connectivity between primary motor and so-
matosensory cortex following learning by observation of movements in a
force field (McGregor and Gribble, 2017). Across subjects, these changes
correlate with individual differences in learning. In another study,
Mayhew and colleagues report that during physical training, perfor-
mance levels on a grip force task correspond with fMRI signal in bilateral
thalamus, posterior parietal cortex, and dorsal pre-motor cortex only
when visual feedback is provided (Mayhew et al., 2017). We extend these
previous findings by showing that the degree of coupling between SMA
and visual regions is higher in subjects with strong behavioral modula-
tions that depend on the congruency of visual feedback during physical
training. Importantly, visual-only ROIs did not yield a similar de-
pendency, thus the individual differences are unlikely to be due to dif-
ferences in mere perception. Interestingly in the current data-set, activity
level in SMA during mere observation did not correspond with individual
differences in performance level (Ossmy and Mukamel, 2016a). Only in
conditions where visual input was coupled to executed actions (as
described here) did such correlations emerge, suggesting a different role
for vision when it is coupled with motor output. This is in agreement with
our recent behavioral finding in which we report differences in sensi-
tivity to visual input of hand size depending on whether or not the visual
signal is coupled to motor output (Ossmy and Mukamel, 2017). Thus the
addition of visual input during training seems to induce selective changes
in coupling within visuo-motor networks which deserve further study.

It is an open question whether our results are limited to simple motor
tasks or short-term training. With respect to the number of sequence
repetitions, our study is compatible with equivalent short-term studies
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reported in the literature (Mattar and Gribble, 2005; Gabitov et al.,
2015). However, further research should be undertaken to investigate
sensitivity to congruency of visual feedback across multiple training
sessions spanning longer time periods (e.g. days or weeks).

In summary, by examining the effects of manipulation of visual
feedback on motor learning, we show that some individuals are more
susceptible than others to visual input during short-term motor learning.
Furthermore, we show that such behavioral variability might be
explained by differential coupling between SMA and visual areas across
individuals during the training process. Such activation patterns allow
predicting subsequent modulations in performance gains. These findings
have implications to the ongoing endeavor of optimizing motor training.
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